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In the present paper we present a family of twelve steps symmetric multistep methods.
The explicit part of new family of methods is applied to the scattering problems of the radial
Schrödinger equation. This application shows the efficiency of the new family of methods.
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1. Introduction

Let us consider IVP of the form:

y′′ = f (x, y), y(x0) = y0, y′(x0) = y′0 (1)

which solution has an oscillatory behavior. This type of equations are very important
in many areas of quantum mechanics, physical chemistry, chemical physics, celestial
mechanics or electronics.

For the solution of the above type of problems the most important properties are the
following: (i) algebraic order of the method, (ii) interval of periodicity of the method,
(iii) minimization of the phase-lag of the method, (iv) symmetry of the method, (v) ex-
ponential fitting and in special cases (vi) other adaptive properties such as Bessel and
Neumann fitting. The development of methods with these properties is a continuing
quest.

One of the most common proposed method that verifies all these properties (i)–(iv)
are the symmetric multistep methods. Lambert and Watson [1] proved that a convergent
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multistep method with a non-zero interval of periodicity must be a symmetric method
and must have even order. They gave examples of explicit methods with orders 2, 4, 6
and implicit methods with orders 4, 6, 8. Since the publication of that paper to nowadays
several methods has been appear independently without a theory for its construction. In
this paper we put some light in the construction of the existing and new symmetric
methods, showing that they are part of the general family presented here.

In fact, we will extend this family to the case of exponential fitting methods with
respect to one frequency (property (v)). That is to say when we take w = 0 in our family
we have a family that contains the classic symmetric methods. When we take w �= 0
then we have construct their exponential fitting extension. Finally the obtained methods
have been applied to the resonance problem of the radial Schrödinger equation.

2. Family of twelve steps symmetric multistep methods

Definition. An ordinary polinomial of degree n in the variable ξ (real or complex)

ρ(ξ) =
n∑
i=0

aiξ
i, ai ∈ R, (2)

is said to be symmetric if ai = an−i , i = 0, 1, . . . , n, and a0 �= 0.

A classical multistep method represented by the polynomials (ρ, σ ) is said sym-
metric if both polynomials are symmetric (see Lambert and Watson [1] for more details).

2.1. Explicit symmetric family

Given h > 0, for the integration of y′′(x) = f (x, y) we consider the family of 12
step symmetric multistep methods:

a0yn−6 + a1yn+5 + a2y−4+n + a3yn−3 + a4yn−2

+ a5yn−1 + a5yn+1 + a4yn+2 + a3yn+3 + a2yn+4 + a1yn+5 + a0yn+6

= h2

3628800

(
50(18289152α − 29786771a0 − 1435008a1 − 176979a2

− 152192a3 − 72339a4)fn + (36288000α − 58366945a0

− 6209664a1 − 214305a2 + 6272a3 − 993a4)f−4+n
+ (−163296000α + 238634060a0 + 3516672a1 − 4059060a2

− 276736a3 + 17484a4)fn−3

+ (435456000α − 702113860a0

− 38671872a1 − 6211140a2 − 3787264a3 − 342084a4)fn−2

+ (−762048000α + 1203012020a0 + 33694464a1 − 12307020a2

− 6652672a3 − 3309132a4)fn−1 + (−762048000α + 1203012020a0
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+ 33694464a1 − 12307020a2 − 6652672a3 − 3309132a4)fn+1

+ (435456000α − 702113860a0 − 38671872a1 − 6211140a2

− 3787264a3 − 342084a4)fn+2 + (−163296000α + 238634060a0

+ 3516672a1 − 4059060a2 − 276736a3 + 17484a4)fn+3

+ (36288000α − 58366945a0 − 6209664a1 − 214305a2 + 6272a3 − 993a4)fn+4

− 3628800αfn−5 − 3628800αfn+5
)

(3)

where

a5 = −a0 − a1 − a2 − a3 − a4 (4)

and

sin

(
wh

2

)10

1857945600wh2α

= wh2(708794075a1 + 740244800a2 + 740864475a3

+ 742860800a4 + 744669275a5)

+ (c1a5 − 4wh2(292329389a1 + 303829760a2 + 302416173a3 + 301580288a4

+ 300753005a5)
)

cos(wh)

+ (c1a4 + 4wh2(165860497a1 + 173975680a2 + 174581649a3 + 175442944a4

+ 175528465a5)
)

cos(2wh)

+ (c1a3 + wh2(−235117388a1 − 242693120a2 − 238910796a3 − 238616576a4

− 238634060a5)
)

cos(3wh)

+ (c1a2 + wh2(52157281a1 + 58152640a2 + 58373217a3 + 58365952a4

+ 58366945a5)
)

cos(4wh)

+ c1a1 cos(5wh)+ c1a0 cos(6wh) (5)

where c1 = −3628800.
The local truncation error is:

C14h
14(w2y(14)(t)+ y(16)(t)

)+O(h16) (6)

where

C14= 1

2615348736000
(139817479445a0 − 3127899648a1 + 299126805a2

− 44632576a3 + 15936789a4). (7)
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2.2. Implicit symmetric family

a0yn−6 + a1yn−5 + a2yn−4 + a3yn−3 + a4yn−2

+ a5yn−1 + a5yn+1 + a4yn+2 + a3yn+3 + a2yn+4 + a1yn+5 + a0yn+6

= h2
(

36883123200α−1970300185a0+226371072a1+111928935a2+82237952a3+40168167a4
39916800 fn

−αfn−6 +
(
12α − 8323367a0

4561920 − 34901a1
623700 + 6617a2

4561920 − 13a3
89100 + 6059a4

159667200

)
fn−5

+ (−66α + 4929041a0
2280960 − 179569a1

155925 − 167791a2
2280960 + 71a3

22275 − 52141a4
79833600

)
fn−4

+ (220α − 74554411a0
4561920 − 322039a1

207900 − 11211791a2
10644480 − 51659a3

623700 + 347317a4
53222400

)
fn−3

+ (−495α + 14518327a0
570240 − 204884a1

51975 − 2509013a2
1330560 − 160004a3

155925 − 657449a4
6652800

)
fn−2

+ (792α − 117774551a0
2280960 − 28481a1

11550 − 1825459a2
591360 − 581269a3

311850 − 2672767a4
2956800

)
fn−1

+ (792α − 117774551a0
2280960 − 28481a1

11550 − 1825459a2
591360 − 581269a3

311850 − 2672767a4
2956800

)
fn+1

+ (−495α + 14518327a0
570240 − 204884a1

51975 − 2509013a2
1330560 − 160004a3

155925 − 657449a4
6652800

)
fn+2

+ (220α − 74554411a0
4561920 − 322039a1

207900 − 11211791a2
10644480 − 51659a3

623700 + 347317a4
53222400

)
fn+3

+ (−66α + 4929041a0
2280960 − 179569a1

155925 − 167791a2
2280960 + 71a3

22275 − 52141a4
79833600

)
fn+4

+ (12α − 8323367a0
4561920 − 34901a1

623700 + 6617a2
4561920 − 13a3

89100 + 6059a4
159667200

)
fn+5 − αfn+6

)
(8)

where

a5 = −a0 − a1 − a2 − a3 − a4 (9)

and

326998425600 sin

(
wh

2

)12

α

= wh2(−3940600370a0 + 452742144a1 + 223857870a2 + 164475904a3

+ 80336334a4)+
(
c2a5 + wh2(8244218570a0 + 393721344a1

+ 492873930a2 + 297609728a3 + 14432941a4)
)

cos(wh)

+ (c2a4 − 8wh2(508141445a0 − 78675456a1 − 37635195a2

− 20480512a3 − 1972347a4)
)

cos(2wh)

+ (c2a3 + wh2(2609404385a0 + 247325952a1 + 168176865a2

+ 13224704a3 − 1041951a4)
)

cos(3wh)

+ (c2a2 + wh2(−345032870a0 + 183878656a1 + 11745370a2

− 508928a3 + 104282a4)
)

cos(4wh)

+ (c2a1 + wh2(291317845a0 + 8934656a1 − 231595a2

+ 23296a3 − 6059a4)
)

cos(5wh)+ c2a0 cos(6wh) (10)

where c2 = 159667200.
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The local truncation error is:

C16h
16
(
w2y(14)(t)+ y(16)(t)

)+O(h18
)

(11)

where

C16=− 1

31384184832000
(31861537855a0 − 2660090880a1 + 402680895a2

− 74464256a3 + 33586239a4). (12)

3. Properties

Corollary.

(i) If a0 �= 0 then the explicit multistep symmetric (3) integrates exactly the equa-
tion (1) when y(x) is any linear combination of the functions:

1, x, x2, . . . , x11, cos(wx), sin(wx). (13)

(ii) If a0 �= 0 then the implicit multistep symmetric (8) integrates exactly the
equation (1) when y(x) is any linear combination of the functions:

1, x, x2, . . . , x13, cos(wx), sin(wx). (14)

Theorem.

(i) The explicit multistep symmetric methods given by (3) when wh tends to zero
are the maximum order methods with twelve steps.

(ii) The implicit multistep symmetric given by (8) when wh tends to zero are the
maximum order methods with twelve steps.

Proof. The conditions over the polinomial ρ cames form the consistency of the method.
Ones that ρ has been choose σ is unique if we ask for maximum order methods. To prove
that our choice of σ is right a simple Taylor expansion is enough.

When wh tends to zero the coefficient α of the explicit method tends to

291317845a0 + 8934656a1 − 231595a2 + 23296a3 − 6059a4

159667200
. (15)

When wh tends to zero the coefficient α of the explicit method tends to

139817479445a0 − 3127899648a1 + 299126805a2 − 44632576a3 + 15936789a4

2615348736000
.

(16)
For example, all the twelve step methods that appear in the paper of Quinlan and

Tremaine [2] are particular choices of ai , i = 0, 1, 2, 3, 4, in our family. �
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4. Numerical illustrations – the radial Schrödinger equation

The radial Schrödinger equation can be written as

y′′(x) =
[
l(l + 1)

x2
+ V (x)− k2

]
y(x). (17)

Equations of this type occur frequently in theoretical physics and chemistry (see for
example [3–8]). In (17) the function W(x) = l(l + 1)/x2 + V (x) denotes the effective
potential, which satisfies W(x) → 0 as x → ∞, k2 is a real number denoting the
energy, l is a given integer representing angular momentumand V is a given function
which denotes the potential. The boundary conditions are:

y(0) = 0 (18)

and a second boundary condition, for large values of x, determined by physical consid-
erations.

There is much research activity in developing techniques for the numerical solution
of the Schrödinger equation (for a review see [9,10]). A prime aim of this activity is the
construction of a fast and reliable methods.

A fruitful way for developing efficient methods for the solution of (17) is to use
exponential fitting. Up till the present the exponential fitting was applied to symmetric
multistep methods. Raptis and Allison [11] have derived a Numerov type exponentially
fitted method. The computational results obtained in [11] indicate that these fitted meth-
ods are much more efficient than Numerov’s method for the solution of (17). Since then,
exponential fitting has been the subject of great activity for the construction of sym-
metric exponentially-fitted multistep methods. An important contribution in this general
area is that of Ixaru and Rizea [6]. They showed that for the resonance problem defined
by (17) it is generally more efficient to derive methods which exactly integrate functions
of the form {

1, x, x2, . . . , xp, exp(±vx), x exp(±vx), . . . , xm exp(±vx)}, (19)

where v is the frequency of the problem, than to use classical exponential fitting methods.
The reason for this is explained in [12]. We note that the resonance problem is a stiff
oscillatory problem. For the method obtained by Ixaru and Rizea [6] we havem = 1 and
p = 1. Another low order method of this type (with m = 2 and p = 0) was developed
by Raptis [13]. Raptis (see [14,15]) has derived four-step exponentially-fitted methods.
For these methods we have m = 0, p = 5 and m = 2 and p = 1. Simos [16] has also
derived a four-step exponentially-fitted method. For this method we have m = 3 and
p = 0. Simos [17] has derived a family of four-step methods which give more efficient
results than other four-step methods. In particular, he has derived methods with m = 0
and p = 5, m = 1 and p = 3, m = 2 and p = 1 and finally m = 3 and p = 0. We note
here that also hybrid exponentially-fitted methods have been derived during these years
(for a full review see [10]).
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In this section we present some numerical results to illustrate the performance of
our new methods. Consider the numerical integration of the Schrödinger equation (17)
using the well-known Woods–Saxon potential which is given by

V (x) = VW(x) = u0

(1+ z) −
u0z

[a(1+ z)2] (20)

with z = exp[(x − R0)/a], u0 = −50, a = 0.6 and R0 = 7.0. In the case of negative
eigenenergies (i.e. when E ∈ [−50, 0]) we have the well-known bound-states problem
while in the case of positive eigenenergies (i.e. when E ∈ [1, 1000]) we have the well-
known resonance problem.

4.1. Resonance problem

In the asymptotic region the equation (17) effectively reduces to

y′′(x)+
(
k2 − l(l + 1)

x2

)
y(x) = 0, (21)

for x greater than some value X.
The above equation has linearly independent solutions kxjl(kx) and kxnl(kx),

where jl(kx), nl(kx) are the spherical Besseland Neumann functions, respectively. Thus
the solution of equation (1) has the asymptotic form (when x →∞)

y(x)Akxjl(kx)− Bnl(kx)
D[ sin(kx − πl/2)+ tan δl cos(kx − πl/2)] (22)

where δl is the phase shiftwhich may be calculated from the formula

tan δl = y(x2)S(x1)− y(x1)S(x2)

y(x1)C(x2)− y(x2)C(x1)
(23)

for x1 and x2 distinct points on the asymptotic region (for which we have that x1 is the
right hand end point of the interval of integration and x2 = x1−h, h is the stepsize) with
S(x) = kxjl(kx) and C(x) = kxnl(kx).

Since the problem is treated as an initial-value problem, one needs y0 and y1 before
starting a multistep method. From the initial condition, y0 = 0. The values yi , i =
2, . . . , 8, are computed using the Runge–Kutta–Nyström 12(10) method of Dormand
et al. [20,21]. With these starting values we evaluate at x1 of the asymptotic region the
phase shift δl from the above relation.

4.2. The Woods–Saxon potential

As a test for the accuracy of our methods we consider the numerical integration of
the Schrödinger equation (17) with l = 0 in the well-known case where the potential
V (r) is the Woods–Saxon one (20).

One can investigate the problem considered here, following two procedures. The
first procedure consists of finding the phase shiftδ(E) = δl for E ∈ [1, 1000]. The
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second procedure consists of finding those E, for E ∈ [1, 1000], at which δ equals π/2.
In our case we follow the first procedure i.e. we try to find the phase shifts for given
energies. The obtained phase shift is then compared to the analytic value of π/2.

The above problem is the so-called resonance problemwhen the positive eigenen-
ergies lie under the potential barrier. We solve this problem, using the technique fully
described in [1].

The boundary conditions for this problem are:

y(0)= 0,

y(x)∼ cos
[√
Ex
]

for large x.

The domain of numerical integration is [0, 15].
For comparison purposes in our numerical illustration we use the well-known Nu-

merov’s method (which is indicated as method [a]), the exponentially fitted method
of Raptis and Allison [11] (which is indicated as method [b]), the exponentially-fitted
method of Ixaru and Rizea [6] (which is indicated as method [c]), the exponentially-
fitted method of Raptis [13] (which is indicated as method [d]), the classical Cowell
method of order 8 mentioned in Henrici [18] (which is indicated as method [e]), the
Cowell method of fourth algebraic order which integrates exactly functions of the form
{1, x, x2, x3, cos(w, x), sin(w, x)}, which has been developed by Stiefel and Bettis [19]
(which is indicated as method [f]), the exponentially-fitted Cowell method of fourth al-
gebraic order which integrates exactly functions of the form

{
1, x, cos(w, x), sin(w, x), x cos(w, x), x sin(w, x)

}
,

which has been developed by Stiefel and Bettis [19] (which is indicated as method [g]),
the exponentially-fitted Cowell method of sixth algebraic order which integrates exactly
functions of the form {1, x, x2, x3, x4, x5, cos(w, x), sin(w, x)}, which has been devel-
oped by Stiefel and Bettis [19] (which is indicated as method [h]), the exponentially-
fitted Cowell method of sixth algebraic order which integrates exactly functions of the
form {1, x, x2, x3, cos(w, x), sin(w, x), x cos(w, x), x sin(w, x)}, which has been de-
veloped by Stiefel and Bettis [19] (which is indicated as method [i]), the exponentially-
fitted Cowell method of sixth algebraic order which integrates exactly functions of the
form {1, x, cos(w, x), sin(w, x), x cos(w, x), x sin(w, x), x2 cos(w, x), x2 sin(w, x)},
which has been developed by Stiefel and Bettis [19] (which is indicated as method [k])
and the exponentially-fitted symmetric twelve step method of algebraic order twelve
developed in this paper (which is indicated as method [l]).

The numerical results obtained for the methods mentioned above, with stepsizes
equal to h = 1/2n, were compared with the analytic solution of the Woods–Saxon po-
tential resonance problem, rounded to six decimal places. Figure 1 show the errors
Err = − log10 |Ecalculated − Eanalytical| of the highest eigenenergy E3 = 989.701916 for
several values of n.
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(a)

(b)

Figure 1. Values of Err for several values of n for the resonance E3 = 989.7019159. The nonexistance of
a value of Err indicates that the value of Err is negative.
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(c)

Figure 1. (Continued).

The performance of the present method is dependent on the choice of the fitting
parameter v. For the purpose of obtaining our numerical results it is appropriate to
choose v in the way suggested by Ixaru and Rizea [6]. That is, we choose:

v =
{
(−50− E)1/2 for x ∈ [0, 6.5],
(−E)1/2 for x ∈ (6.5, 15]. (24)

For a discussion of the reasons for choosing the values 50 and 6.5 and the extent to which
the results obtained depend on these values see [6, p. 25].

4.3. Modified Woods–Saxon potential

In figure 2 some results for Err = − log10 |Ecalculated − Eanalytical| of the highest
eigenenergy E3 = 1002.768393, for several values of n, obtained with another potential
in (17) using the methods mentioned above are shown. This potential is

V (x) = VW(x)+ D
x

(25)

where VW is the Woods–Saxon potential (20). For the purpose of our numerical experi-
ments we use the same parameters as in [6], i.e. D = 20, l = 2.

Since V (x) is singular at the origin, we use the special strategy of [6]. We start the
integration from a point ε > 0 and the initial values y(ε) and y(ε+h) for the integration
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(a)

(b)

Figure 2. Values of Err for several values of n for the resonance E3 = 1002.768393. The nonexistance of
a value of Err indicates that the value of Err is negative.
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(c)

Figure 2. (Continued).

scheme are obtained using a perturbation method (see [6]). As in [6] we use the value
ε = 1/4 for our numerical experiments.

For the purpose of obtaining our numerical results it is appropriate to choose v in
the way suggested by Ixaru and Rizea [6]. That is, we choose:

v =




[V (a1)+ V (ε)]
2

for x ∈ [ε, a1],
V (a1)

2
for x ∈ (a1, a2],

V (a3) for x ∈ (a2, a3],
V (15) for x ∈ (a3, 15].

where ai , i = 1, . . . , 3, are fully defined in [6].
We note here that each figure has three parts. In each part for comparison purposes

we have included the method [n] which is the most accurate one.

5. Conclusions

A family of twelve steps symmetric multistep methods is presented in the present
paper. The development of the new family of methods is done via a general family of
methods, which is constructed in the paper. Part of this family of methods are existing
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well known symmetric multistep methods. The explicit part of new family of methods is
applied to the scattering problems of the radial Schrödinger equation. This application
shows the efficiency of the new family of methods.

Acknowledgements

The work was done during the visit of the second author to University of Sala-
manca. The authors wish to thank Spanish Ministry of Education grant SAB 1999/0153,
JCYL under project SA 66/01 and CICYT under project BMF-2000-1115.

References

[1] L.D. Lambert and I.A. Watson, Symmetric multistep methods for periodic initial value problems,
J. Inst. Math. Appl. 18 (1976) 189–202.

[2] G.D. Quinlan and S. Tremaine, Symmetric multistep methods for the numerical integration of plane-
tary orbits, Astronom. J. 100 (1990) 1694–1700.

[3] I. Prigogine and S. Rice (eds.), New Methods in Computational Quantum Mechanics, Advances in
Chemical Physics, Vol. 93 (Wiley, New York, 1997).

[4] J.M. Blatt, Practical points concerning the solution of the Schrödinger equation, J. Comput. Phys. 1
(1967) 382–396.

[5] L.Gr. Ixaru and M. Micu, Topics in Theoretical Physics(Central Institute of Physics, Bucharest, 1978).
[6] L.Gr. Ixaru and M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger

equation in the deep continuum spectrum of energies, Comput. Phys. Commun. 19 (1980) 23–27.
[7] L.D. Landau and F.M. Lifshitz, Quantum Mechanics(Pergamon, New York, 1965).
[8] G. Herzberg, Spectra of Diatomic Molecules(Van Nostrand, Toronto, 1950).
[9] T.E. Simos and P.S. Williams, On finite difference methods for the solution of the Schrödinger equa-

tion, Comput. Chem. 23 (1999) 513–554.
[10] T.E. Simos, in: Atomic Structure Computations in Chemical Modelling: Applications and Theory, ed.

A. Hinchliffe (The Royal Society of Chemistry, 2000) pp. 38–142.
[11] A.D. Raptis and A.C. Allison, Exponential-fitting methods for the numerical solution of the

Schrödinger equation, Comput. Phys. Commun. 14 (1978) 1–5.
[12] T.E. Simos, Error analysis of exponential-fitted methods for the numerical solution of the one-

dimensional Schrödinger equation, Phys. Lett. A 177 (1993) 345–350.
[13] A.D. Raptis, Two-step methods for the numerical solution of the Schrödinger equation, Computing

28 (1982) 373–378.
[14] A.D. Raptis, On the numerical solution of the Schrödinger equation, Comput. Phys. Commun. 24

(1981) 1–4.
[15] A.D. Raptis, Exponentially-fitted solutions of the eigenvalue Schrödinger equation with automatic

error control, Comput. Phys. Commun. 28 (1983) 427–431.
[16] T.E. Simos, A four-step method for the numerical solution of the Schrödinger equation, J. Comput.

Appl. Math. 30 (1990) 251–255.
[17] T.E. Simos, Some new four-step exponential-fitting methods for the numerical solution of the radial

Schrödinger equation, IMA J. Numer. Anal. 11 (1991) 347–356.
[18] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations(Wiley, New York, 1962).
[19] E. Stiefel and D.G. Bettis, Stabilization of Cowell’s Method, Numer. Math. 13 (1969) 154–175.
[20] J. Vigo-Aguiar, Mathematical methods for orbit computation, Doctoral Dissertation, University of

Valladolid (1993). (Available from the author.)



270 J. Vigo-Aguiar, T.E. Simos / Family of twelve steps symmetric multistep methods

[21] J. Vigo-Aguiar and J.M. Ferrándiz, A general procedure for the adaptation of multistep algorithms to
the integration of oscillatory problems, SIAM J. Numer. Anal. 35 (1998) 1684–1708.

[22] T. Lyche, Chebyshevian multistep methods for ordinary differential equations, Numer. Math. 19
(1972) 65–75.


