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In the present paper we present a family of twelve steps symmetric multistep methods.
The explicit part of new family of methods is applied to the scattering problems of the radial
Schrodinger equation. This application shows the efficiency of the new family of methods.
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1. Introduction

Let us consider I\VP of the form:

y'=fx,y), y(xo) = yo, Y(x0) =y (1)

which solution has an oscillatory behavior. This type of equations are very important
in many areas of quantum mechanics, physica chemistry, chemical physics, celestia
mechanics or electronics.

For the solution of the above type of problems the most important properties arethe
following: (i) algebraic order of the method, (ii) interval of periodicity of the method,
(iii) minimization of the phase-lag of the method, (iv) symmetry of the method, (v) ex-
ponentia fitting and in specia cases (vi) other adaptive properties such as Bessdl and
Neumann fitting. The development of methods with these properties is a continuing
quest.
One of the most common proposed method that verifies all these properties (i)—(iv)
are the symmetric multistep methods. Lambert and Watson [1] proved that a convergent
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multistep method with a non-zero interval of periodicity must be a symmetric method
and must have even order. They gave examples of explicit methods with orders 2, 4, 6
and implicit methods with orders 4, 6, 8. Since the publication of that paper to nowadays
several methods has been appear independently without a theory for its construction. In
this paper we put some light in the construction of the existing and new symmetric
methods, showing that they are part of the general family presented here.

In fact, we will extend this family to the case of exponential fitting methods with
respect to one frequency (property (v)). That isto say when wetake w = 0in our family
we have a family that contains the classic symmetric methods. When we take w £ 0
then we have construct their exponential fitting extension. Finally the obtained methods
have been applied to the resonance problem of the radial Schrédinger equation.

2. Family of twelve steps symmetric multistep methods

Definition. An ordinary polinomial of degree n in the variable & (real or complex)

p&) =) &, a€R, 2
i=0
issaid to be symmetricifa; = a,_;,i =0,1,...,n,and ag # 0.

A classical multistep method represented by the polynomias (p, o) is said sym-
metric if both polynomials are symmetric (see Lambert and Watson [1] for more details).

2.1. Explicit symmetric family

Given h > 0, for the integration of y”(x) = f(x, y) we consider the family of 12
step symmetric multistep methods:

aoYn—6 + A1Yn+5 + A2Y—41n + A3Yn—3 + A4Yn—2

+asyn—1 + asyn+1 + @aynt2 + A3Yn13 + A2Ynt4 + A1Yn45 + AoYnte
2

h
= 18289152« — 297867 71ap — 1 — 17697
3628800(50( 8289152« 9786771ay — 1435008a, 6979a,

—152192a3 — 72339a,) f, + (362880000 — 58366945a0

— 6209664a; — 214305a;, + 6272a3 — 993a4) f—a4n

+ (—163296000c + 238634060a¢ + 3516672a, — 4059060a,

— 276736a3 + 17484ay) f,—3

+ (435456000« — 702113860a0

— 38671872a; — 6211140a, — 3787264a3 — 342084ay) f,—2

+ (=762048000« + 1203012020a¢ + 33694464a1 — 12307020a;

— 6652672a3 — 3309132a4) f,—1 + (—762048000c + 120301202040
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+ 33694464a; — 12307020a, — 66526723 — 3309132a4) foi1
| (4354560000 — 7021138600 — 386718724 — 62111404,

— 3787264a; — 342084a,) f, 2 + (—163296000a + 2386340600

+ 351667241 — 40590604, — 276736a3 + 17484a4) for3

+ (362880000 — 58366945 — 6209664a; — 2143054, + 627243 — 993as) o1
— 3628800cf, 5 — 36288000.f, 15) 3)

where
as = —ap— a1 —da —az — da (4)

and

wh 10
sin<7> 1857945600 wh’«

= wh?(708794075a, + 7402448004, + 740864475a;
+ 742860800a,4 + 744669275as)
+ (c1a5 — Awh?(292329389; + 3038297604, + 302416173a; + 30158028844
+ 3007530054s)) cos(wh)
+ (c1a4 + 4wh?(165860497a; + 173975680a, + 1745816493 + 175442944a,
+ 175528465as)) cos(2wh)
+ (c1a3 + wh*(—235117388a; — 242693120a, — 238910796a3 — 2386165764,
— 238634060a5)) cos(3wh)
+ (claz + wh?(52157281a, + 58152640a, + 5837321743 + 583659524,
+ 58366945as) ) cos(4wh)
+ c1a1 coS(5wh) + c1ag COS(6wh) (5)

where ¢; = —3628800.
Theloca truncation error is;

Caah™(w?y™ @) + y*9 ) + 0 (h™°) (6)

where

Cua (139817479445a, — 3127899648a1 + 299126805a,

~ 2615348736000
— 44632576a3 + 15936789%4). (7
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2.2. Implicit symmetric family

agyYn—6 + ai1yn-5 + azyn—4 + azyn—-3 + agyn—2

where

and

+asy,—1+ asyni1 + Aaypi2 + a3yn3 + A2Ynia + A1Yni5 + A0Ynie

—h 2 ( 36883123200« —1970300185a0+226371072a14-111928935a,+-82237952a3+40168167a4 f
= n

39916800
_ _ 8323367ag _ 3490la; , 6617ap _ 13a3 60594
ofu-6+ (120 Josiors. — 623700 T 761950 — 9106 T Toaco7o) S5

_ 4929041ag _ 179569ay 167791ay 7lag _ 5214lay
+ ( 660 + 2280960 155925 2280960 + 22275 79833600)f n—4

+ (2200 — “5175° — Foea0” — “Tosaas’ — oz T Sazzzace) S

+ (495 + “HET — Lo — s — 1eus’ — oeezans) 2

+ (7920 — H3755085" — “Tisso’ — “sorss0” — atigso’ — z986800°) J-1

+ (7920 — e — “ess — “eoiam0” — 3Ligsn’ — osa00’) St
+(—4950 + H00" — Ko — Sioser — tosers — oeezans ) 2

+ (2200 — T — oro00” — To6aaaBs’ — 6236 T sazzzae) Jn+3

+ (660 + Z50006" — 50025 — Zz00060 T 225 — Tagsasen) Jo+a

+( 20 — Siggigggo - ?;3429397%5 + 465?51179”220 - 81931QOBO + 1536569;300) fnts — afn+6) (8)

as = —ap — a1 —az —az — dq 9)

wh\ 12
326998425600sin ( 7) o

= wh?(—3940600370a, + 452742144a, + 223857870a, + 164475904a;
+80336334a4) + (coas + wh?(8244218570a, + 393721344a,
+492873930a; + 297609728a3 + 14432941ay4)) cos(wh)
+ (coaq — Bwh?(508141445a0 — 7867545641 — 37635195a,
— 20480512a3 — 1972347a4)) cos(2wh)
+ (coas + wh?(2609404385a + 2473259524, + 1681768654,
+ 132247045 — 1041951ay4)) cos(3wh)
+ (c2az + wh?(—345032870a, + 1838786564 + 11745370a,
— 50892843 + 104282a4)) cos(4wh)
+ (c2a1 + wh?(291317845a0 + 89346564, — 2315954,
+ 23296a3 — 6059a4) ) cOS(5wh) + coao COS(Bwh) (10)

where ¢, = 159667200.
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Theloca truncation error is;

where

1
~31384184832000

Cie= (31861537855a¢ — 2660090880a; + 402680895,

— 7446425605 + 33586239%4). 12)

3. Properties

Corallary.
(i) If ag # Othen the explicit multistep symmetric (3) integrates exactly the equa
tion (1) when y(x) isany linear combination of the functions:

1, x, x% ..., x%,  cos(wx), sin(wx). (13)

(i) If ap # 0 then the implicit multistep symmetric (8) integrates exactly the
equation (1) when y(x) isany linear combination of the functions:

1, x, x% ..., xB, cos(wx), sin(wx). (14

Theorem.

(i) Theexplicit multistep symmetric methods given by (3) when wh tends to zero
are the maximum order methods with twelve steps.

(i) Theimplicit multistep symmetric given by (8) when wh tends to zero are the
maximum order methods with twelve steps.

Proof. The conditions over the polinomial p camesform the consistency of the method.
Onesthat p hasbeen choose o isunique if we ask for maximum order methods. To prove
that our choice of o isright asimple Taylor expansion is enough.
When wh tends to zero the coefficient « of the explicit method tends to
291317845a + 8934656a; — 231595a;, + 23296a3 — 60594
159667200 '

When wh tends to zero the coefficient « of the explicit method tends to

139817479445ay — 3127899648a; + 299126805a, — 44632576a3 + 159367894
2615348736000 '

(15)

(16)
For example, al the twelve step methods that appear in the paper of Quinlan and
Tremaine [2] are particular choices of a;,i = 0, 1, 2, 3, 4, in our family. O
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4.  Numerical illustrations —theradial Schrédinger equation

Theradia Schrédinger equation can be written as

I+ 1
V() = [ (; ) v —kz}ym. (17)

Equations of this type occur frequently in theoretical physics and chemistry (see for

example [3-8]). In (17) the function W (x) = [(I + 1)/x? + V(x) denotes the effective
potentia] which satisfies W(x) — 0asx — oo, k? is a real number denoting the

energy [ is a given integer representing angular momentunand V is a given function

which denotes the potential. The boundary conditions are:

y0) =0 (18)

and a second boundary condition, for large values of x, determined by physical consid-
erations.

Thereis much research activity in devel oping techniques for the numerical solution
of the Schrodinger equation (for areview see [9,10]). A prime aim of this activity isthe
construction of afast and reliable methods.

A fruitful way for developing efficient methods for the solution of (17) isto use
exponentia fitting. Up till the present the exponentia fitting was applied to symmetric
multistep methodsRaptis and Allison [11] have derived a Numerov type exponentially
fitted method. The computational results obtained in [11] indicate that these fitted meth-
ods are much more efficient than Numerov’s method for the solution of (17). Since then,
exponentia fitting has been the subject of great activity for the construction of sym-
metric exponentially-fitted multistep methods. An important contribution in this general
areaisthat of Ixaru and Rizea[6]. They showed that for the resonance problem defined
by (17) itis generally more efficient to derive methods which exactly integrate functions
of the form

{1,x,x%, ..., xP, exp(dvx), x exp(xvx), ..., x" exp(xvx)}, (19)

where v isthe frequency of the problem, than to use classical exponential fitting methods.
The reason for this is explained in [12]. We note that the resonance problem is a tiff
oscillatory problem. For the method obtained by Ixaru and Rizea[6] we havem = 1 and
p = 1. Another low order method of this type (withm = 2 and p = 0) was developed
by Raptis [13]. Raptis (see [14,15]) has derived four-step exponentialy-fitted methods.
For these methodswehavem = 0, p = 5andm = 2and p = 1. Simos[16] has aso
derived a four-step exponentially-fitted method. For this method we have m = 3 and
p = 0. Simos [17] has derived afamily of four-step methods which give more efficient
results than other four-step methods. In particular, he has derived methods with m = 0
andp=5m=1landp =3, m=2and p=1andfindly m = 3and p = 0. We note
here that also hybrid exponentialy-fitted methods have been derived during these years
(for afull review see[10]).
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In this section we present some numerical results to illustrate the performance of
our new methods. Consider the numerical integration of the Schrédinger equation (17)
using the well-known Woods-Saxon potential which is given by

up _ uo
1+2) [a(l+2)?
with z = exp[(x — Rg)/al, ugp = —50, a = 0.6 and Ry = 7.0. In the case of negative
eigenenergies (i.e. when E € [—50, 0]) we have the well-known bound-states problem

while in the case of positive eigenenergies (i.e. when E € [1, 1000]) we have the well-
known resonance problem

V(x) = Vwx) =

(20)

4.1. Resonance problem

In the asymptotic region the equation (17) effectively reduces to

I(1+1
y%x>+-(k2— s )>y@o::o, (21)

for x greater than some value X .

The above equation has linearly independent solutions kxj;(kx) and kxn;(kx),
where j;(kx), n;(kx) arethe spherical Besseind Neumann functionsespectively. Thus
the solution of equation (1) has the asymptotic form (when x — o0)

y(x) >~ Akxj(kx) — Bn;(kx)
~ D[ sin(kx — 71/2) + tan §; cos(kx — 71/2)] (22)

where §; isthe phase shiftvhich may be calculated from the formula

_ Y(x2)S(x1) — y(x1)S(x2)
' Y@ C ) — ya)C(xy)
for x1 and x, distinct points on the asymptatic region (for which we have that x; isthe
right hand end point of theinterval of integration and x, = x; — h, h isthe stepsize) with
S(x) = kxj;(kx) and C(x) = kxn;(kx).

Sincethe problem istreated as an initia-value problem, one needs y, and y; before
starting a multistep method. From the initial condition, yo = 0. The values y;, i =
2,...,8, are computed using the Runge-Kutta—Nystrém 12(10) method of Dormand
et al. [20,21]. With these starting values we evaluate at x; of the asymptotic region the
phase shift §; from the above relation.

tang

(23)

4.2. The Woods—Saxon potential

Asatest for the accuracy of our methods we consider the numerical integration of
the Schrodinger equation (17) with [ = 0 in the well-known case where the potential
V (r) is the Woods-Saxon one (20).

One can investigate the problem considered here, following two procedures. The
first procedure consists of finding the phase shifts(E) = §, for E € [1,1000]. The
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second procedure consists of finding those E, for E € [1, 1000], a which § equals /2.
In our case we follow the first procedure i.e. we try to find the phase shifts for given
energies. The obtained phase shift is then compared to the analytic value of /2.

The above problem is the so-called resonance problerwhen the positive eigenen-
ergies lie under the potential barrieMe solve this problem, using the technique fully
described in [1].

The boundary conditions for this problem are:

y(0) =0,
y(x) ~cos[VEx] forlargex.

The domain of numerical integration is [0, 15].

For comparison purposes in our numerica illustration we use the well-known Nu-
merov’'s method (which is indicated as method [d]), the exponentialy fitted method
of Raptis and Allison [11] (which is indicated as method [b]), the exponentially-fitted
method of Ixaru and Rizea [6] (which is indicated as method [c]), the exponentially-
fitted method of Raptis [13] (which is indicated as method [d]), the classical Cowell
method of order 8 mentioned in Henrici [18] (which is indicated as method [€]), the
Cowell method of fourth algebraic order which integrates exactly functions of the form
{1, x, x?, x3, cos(w, x), sin(w, x)}, which has been developed by Stiefel and Bettis [19]
(which isindicated as method [f]), the exponentialy-fitted Cowell method of fourth al-
gebraic order which integrates exactly functions of the form

{l, x, cos(w, x), Sin(w, x), x cos(w, x), x SiN(w, x)},

which has been developed by Stiefel and Bettis [19] (which isindicated as method [q]),
the exponentially-fitted Cowell method of sixth algebraic order which integrates exactly
functions of the form {1, x, x2, x3, x*, x°, cos(w, x), sin(w, x)}, which has been devel-
oped by Stiefd and Bettis [19] (which is indicated as method [h]), the exponentially-
fitted Cowell method of sixth algebraic order which integrates exactly functions of the
form {1, x, x2, x3, cos(w, x), Sin(w, x), x cos(w, x), x Sin(w, x)}, which has been de-
veloped by Stiefd and Bettis [19] (which isindicated as method [i]), the exponentially-
fitted Cowell method of sixth algebraic order which integrates exactly functions of the
form {1, x, cos(w, x), Sin(w, x), x cos(w, x), x SiN(w, x), x? cos(w, x), x2sin(w, x)},
which has been developed by Stiefel and Bettis [19] (which is indicated as method [K])
and the exponentialy-fitted symmetric twelve step method of algebraic order twelve
developed in this paper (which isindicated as method [1]).

The numerical results obtained for the methods mentioned above, with stepsizes
equa to h = 1/2", were compared with the analytic solution of the Woods-Saxon po-
tential resonance problem, rounded to six decimal places. Figure 1 show the errors
Err = — 100, | Ecaculated — Eanaytical Of the highest eigenenergy E3 = 989.701916 for
several values of n.
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——&— Method [a]
~——ste— Method [b]
——8®—— Method [c]
. ——0—— Method [d]
—4&— Method [1]

Err

(@

——k—— Method [e]
e Method [f]
7] ——@—— Method [g]
e Method [h]
—&—— Method [1]

(b)

Figure 1. Values of Err for severa values of n for the resonance E3 = 989.7019159. The nonexistance of
avalue of Err indicates that the value of Err is negative.
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——— Method [i]
10 = bt Method [K]
—&—— Method [1]

Err

Figure 1. (Continued).

The performance of the present method is dependent on the choice of the fitting
parameter v. For the purpose of obtaining our numerical results it is appropriate to
choose v in the way suggested by Ixaru and Rizea[6]. That is, we choose;

B {(—50— E)Y? forx €[0,6.5],
| (—E)V2 for x € (6.5, 15].

For adiscussion of the reasons for choosing the values 50 and 6.5 and the extent to which
the results obtained depend on these values see [6, p. 25].

(24)

4.3. Modified Woods—Saxon potential

In figure 2 some results for Err = — 100, | Ecacuiated — Eanaytical Of the highest
eigenenergy E3 = 1002.768393, for several values of n, obtained with another potential
in (17) using the methods mentioned above are shown. This potentia is

V@) = Vi) + = (25)

where Vyy isthe Woods-Saxon potential (20). For the purpose of our numerical experi-
ments we use the same parameters asin [6],i.e. D = 20,1 = 2.

Since V (x) issingular at the origin, we use the special strategy of [6]. We start the
integration from apoint ¢ > 0 and theinitia values y(e) and y(e + k) for the integration
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10 =

——t—— Method [a]
——a—— Method [b]
——@—— Method [c]
=————&—— Method [d]
—tp—— Method [1]

Err

——t—— Method [e]
—#&—— Method [f]
~——@——— Method [g]
=@ Method [h]
——a— Method [1]

N

Figure 2. Values of Err for several values of n for the resonance E3 = 1002.768393. The nonexistance of
avalue of Err indicates that the value of Err is negative.
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10 =

1 ~——a—— Method [i]
i Method [K]
———— Method [I]

Err

(©)

Figure 2. (Continued).

scheme are obtained using a perturbation method (see [6]). Asin [6] we use the value
& = 1/4 for our numerical experiments.

For the purpose of obtaining our numerical results it is appropriate to choose v in
the way suggested by Ixaru and Rizea [6]. That is, we choose:

w for x [8 al]

2
%4
v = (201) for x € (a1, as],
V(as) for x € (a, as],
V(15) for x € (as, 15].

wherea;,i =1, ..., 3, arefully defined in [6].
We note here that each figure has three parts. In each part for comparison purposes
we have included the method [n] which is the most accurate one.

5. Conclusions

A family of twelve steps symmetric multistep methods is presented in the present
paper. The development of the new family of methods is done via a general family of
methods, which is constructed in the paper. Part of this family of methods are existing
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well known symmetric multistep methods. The explicit part of new family of methodsis
applied to the scattering problems of the radial Schrodinger equation. This application
shows the efficiency of the new family of methods.
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